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Study of Modal Solution Procedures for
Microstrip Step Discontinuities

QIANG XU, KEVIN J. WEBB, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

Abstract —Single and cascaded microstrip step discontinuity problems
are studied. Modal formulations and numerical solution procedures are
investigated in an effort to determine computationally efficient techniques
for the solution of such problems. The enforcement of a modal orthogonal-
ity criterion, the boundary enlargement/reduction concept, and conver-
gence as a function of the number of modes and their accuracy are
considered. Theoretical and experimental results are presented for the
scattering parameters of several example geometries.

I. INTRODUCTION

ICROSTRIP lines have been used in the microwave

frequency range for some time. Recently, microstrip
has been used in the millimeter-wave range for purposes of
realizing interconnects and a variety of passive compo-
nents. At these higher operating frequencies accurate com-
ponent modeling becomes more critical. Many passive
components utilize step transitions in the strip width, or
step discontinuities. An accurate analysis of these step
discontinuities is therefore of the utmost importance in
facilitating the design of such components.

At the lower frequencies one may use quasi-static tech-
niques to obtain results for the capacitance associated with
a discontinuity [1]. A number of papers have appeared
which use Poisson’s equation in a spectral-domain formu-
lation [2]. A numerical procedure such as the method of
moments (MoM) may then be used to approximately solve
for the charge on the strip and the effective “excess”
capacitance associated with some discontinuity. Step dis-
continuities, gaps, and truncated lines have been treated
this way. The accuracy of such an analysis obviously
deteriorates with increasing frequency. Hence, a full-wave
solution technique is necessary if one is to obtain satisfac-
tory results for higher microwave and millimeter-wave
frequencies. The full-wave analysis of the two-dimensional
microstrip structure is now fairly well developed [3]-[6]. A
spectral-domain formulation with a MoM solution yields
satisfactory results for the propagating and a few higher
order modes, but it is generally impractical to obtain a
large number of evanescent modes. Relatively few papers
have appeared detailing numerical solution techniques or
providing experimental data for three-dimensional mi-
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crostrip problems. The truncated line problem has been
treated using a two-dimensional spectral relationship in
the plane of the metallization [7]. Lately the spectral-
domain analysis was applied to study the scattering from
E-plane circuit elements [8]. A judicious choice of the strip
expansion functions is necessary to yield good results. An
equivalent parallel-plate waveguide model has been used
to permit easy evaluation of propagating and evanescent
modes [9]-[11], which have then been used in a mode-
matching procedure to determine the scattering parameters
of some step discontinuity problems. The accuracy of this
technique is limited by the accuracy of the parallel-plate
waveguide model, which may be a limitation in predicting
the phase of the scattering parameters. An alternative is to
find approximate full-wave solutions for a number of
propagating and evanescent modes and then apply a
mode-matching technique. Some data obtained by this
approach have appeared [12]. The formulation and conver-
gence mechanisms using this latter and related techniques
need to be studied in order to achieve reliable solutions
with minimal numerical computation. The mode-matching
method has also been applied to the discontinuity problem
in various finline structures [13], [14].

New modal formulation techniques are described in this
presentation. The eigenmodes are found using a spectral-
domain formulation with a MoM solution. The step dis-
continuity problem is then analyzed using (i) mode match-
ing where mode orthogonality is enforced and (ii) mode
matching where mode orthogonality is not assumed and
the modes are treated as nonorthogonal basis functions.
The motivation for the second approach is that it is
difficult to find a large number of eigenmodes and fre-
quently the solutions found may be poor and may not
satisfy the mode orthogonality criterion well. A compari-
son is made between these approaches and experimental
results obtained, on the one hand, and data presented in
the literature, on the other. The modal formulation tech-
niques are developed, with a discussion of the relative
merits of the procedures adopted. Numerical and experi-
mental results are provided for single and double step
discontinuity problems.

II. MoDAL ANALYSIS FORMULATION

The two-dimensional microstrip geometry is shown in
Fig. 1. A finite set of eigenvalues (phase constants) and
eigenfunctions (mode functions) need to be determined for
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Fig. 1. Shielded microstrip cross section.

inclusion in the discontinuity representation. Perfect elec-
tric conductors (pec’s) and isotropic dielectrics are as-
sumed in each region.

A spectral Green’s function relationship relating the
currents and fields in the plane of the strip can be ex-
pressed as [4]

Z~xx(an7ﬁ) sz(an,ﬁ))(.];(dn) - Exo(an)) (1)
sz(an’ﬁ) Zsz(annB) fz(an) Ezo(“n) ‘

The equivalent transmission line method used to derive the
Green’s function can be easily extended for more compli-
cated structures such as multiple dielectric layers or multi-
ple strip planes. The MoM, specifically Galerkin’s method,
is applied to solve for the eigenvalues and eigenfunctions.
The strip currents are represented approximately by a
finite set of appropriate basis functions with unknown
coefficients. The basis functions used are [15]

_ cos[(i—1)m(x/w+1)]

fxi( ) (2a)
¥ V1—(x/w)’
£(x) = sin [ jor(x/w+1)] (2b)

Y1-(x/w)?

where i=1,2,---, T and j=1,2,---,J with —w<x<w.
Upon performing inner products, a matrix equation is
obtained which can be solved iteratively using Newton’s
method to determine the eigenvalues. The relative basis
function coefficients can then be computed. This is quite a
time-consuming process if a large number of higher order
modes are needed for a mode-matching formulation. The
mode functions can be found either by returning to the
transverse transmission line model or by evaluating the
scalar potential coefficients using the appropriate bound-
ary conditions on the fields.

Waveguide step discontinuities are of two types: bound-
ary reduction and boundary enlargement, using the termi-
nology of Wexler [16]. A boundary reduction occurs when
the waveguide cross section for the incident wave is larger
than that for the transmitted wave, the reverse being
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Fig. 2. Single step discontinuity in strip width.

boundary enlargement. The difference in the formulation
for the two problems is in the definition of the inner
product, which optimizes the convergence of the solution
as a function of the number of modes used. For many
waveguide discontinuities, such as those in circular or
rectangular waveguide, boundary enlargement and bound-
ary reduction are well defined. This is not the case for
microstrip, as the waveguide shield has the same dimen-
sion on both sides of the strip discontinuity. Therefore, the
definition of boundary enlargement or reduction must be
carefully studied to obtain optimally convergent solutions
with a relatively small number of modes.

Consider the microstrip step discontinuity shown in Fig.
2. By matching the transverse fields in the plane of the
discontinuity, one obtains

(3a)

P Q
¥ a2 0]l = X [af+0]ef)
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P Q
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where e(x, y) and h(x, y) are normalized transverse vec-
tor electric and magnetic mode functions, respectively, and
the a’s are the incident and the b’s the reflected mode
coefficients. The superscripts refer to region 1 for z <0
and region 2 for z>0. In order to solve (3), an inner
product is introduced which is defined as

(e (%, 0) BV (5, 9)) = [ (x3) X BV (x, ) - ds
S
)

where »=1 or 2 and A =1 or 2, indicating the quantities
for z <0 and z > 0, respectively, and S is the shield cross
section. When boundary enlargement or reduction is clearly
defined, the most rapid convergence is obtained when the
inner product is defined such that the electric field is taken
from the smaller waveguide and the magnetic field from
the larger waveguide because of the effective enforcement
of the junction boundary conditions through the inner
products [16], [17]. This enables the boundary conditions
at the junction to be satisfied fairly well with a minimum
number of modes. Upon performing inner products on (3),
the resulting set of equations can be written as

(M)((AD)+(BD)) = (M,)((4P) +(BD))  (5a)
(M) ((AD) = (BW)) = (M) (= (4P)+(BD)) (sb)
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where

(Mu) = (M1r1) = (M281)

(M) = (erz) = (Mlel)

(My) = (Mzrl) = (Mzez)

(Mzz) = (M2’2) = (Mlez)
The superscripts refer to the boundary reduction (r) and
enlargement (e) formulations, respectively, and the 4 and
B matrices contain the mode coefficients for the incident
and the reflected field, respectively.

For the microstrip formulation presented here, the inner

product is performed in the spectral domain to keep the
computation consistent with the mode solutions of the

uniform microstrip. The inner product in the spectral
domain is

. 1
<e~l(v), h;“) =—

T rdenp -
= L [ e AP (- ey )

n=—o00

= &0(a,, VAV (- a,, y)] dy. (6)

In (6) the y integral can be carried out anéllytically.

The eigenmodes of a waveguide with perfectly conduct-
ing walls satisfy the standard orthogonality relationship
[18]: ‘

fSe,xhj-ds=a,J

(7)

where §,, is the Kronecker delta. In the case of waveguides
with perfectly conducting walls and lossless isotropic di-
electric media, an alternative orthogonality condition can
be used:

(3)

As a result of the orthogonality relationship, (M;;) and
(M,,) in (5) reduce to diagonal matrices. Thus (M) and
(M,,) need not be evaluated if the eigenmodes are normal-
ized. As the microstrip mode solutions are approximate,
the orthogonality condition serves as a test of the accuracy
of these numerically computed modes. Meanwhile, it intro-
duces the question of whether or not to retain those matrix
elements which theoretically should equal zero.

The solutions of (5) can be represented in the form of a
generalized scattering matrix which includes information
on the dominant as well as the higher order modes and is

expressed as
(B)) _((Su) (Sn)}[(4D)
( (A(z))). ©

(BO) | \(Sn) (8)

A more detailed discussion of the generalized scattering
matrix can be found in [8], [11], and [19].

The double step problem of Fig. 3 can be analyzed using
an extension of this technique, where the generalized scat-
tering parameters for each of the two step discontinuities
can be combined with the transmission matrix of the
intervening length of line (effectively cascading three
transmission matrices). With some manipulations, a com-

e Xh*-ds=6 .
j:gl 7 1y
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Fig. 3. Double step discontinuity.

posite generalized scattering matrix for the double step can
be obtained [11].

I

Results are presented for single and double step discon-
tinuities in shielded microstrip where the shield is suffi-
ciently large so as to have negligible effect on the strip
currents. Satisfactory results for the double step rely on
good results for the single step.

To ensure the accuracy and the stability of the modal
analysis results, several parameters can be determined dur-
ing the computation. First, the conservation of power for a
single propagating mode can be expressed as |S;|* + |5,/
=1, which is not a sufficient condition to guarantee a
correct solution, but it is necessary and should be verified.
Second, it is important to know the effect on the solution
of perturbations in the matrix elements, since these cle-
ments are approximate. A measure of this can be obtained
from the condition number of the operator matrix A4 in the
equation Ax = b, where x represents the mode coefficient
matrix. The condition number is defined here as

1/2

NUMERICAL AND EXPERIMENTAL RESULTS

max

C(4) = ( (10)
where A, and A, are the maximum and minimum
eigenvalues of the matrix A74. 4% is defined as the
Hermitian, or transposed complex conjugate of A. The
matrix A4 is well conditioned if the condition number
C(A) is close to one and ill conditioned when it is signifi-
cantly greater than one. As a consequence of an ill-condi-
tioned matrix, small errors in the matrix elements could
generate large errors in the solution. When the mode
functions are not normalized, C{A4) can be quite large,
resulting in unstable solutions. If A is “preconditioned”
by normalizing all the mode functions such that (7) or (3)
for i=j results in a number with magnitude one, a
dramatic improvement in C(A) results. A typical value of
the condition number for normalized mode functions found
in this work is about 2.5, which is acceptable.

As the mode functions and the inner products are com-
puted numerically, some deviation from the exact orthogo-
nality relationship is expected. Therefore, in the computed
matrix A4 the value of the nondiagonal elements in (A,,)
and (M,,) reflects the accuracy of the numerical mode
solutions. The inner products between different eigen-
modes from either the left side or the right side of the
junction, with ten modes in each region, result in normal-

A

min
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TABLE 1
SCATTERING PARAMETER COMPUTED ASSUMING
ORTHOGONALITY RELATIONSHIP

Assuming Orthogonolity Relationship < e, h >
Frequency | | Si1 | 11

2.0 (GHz) | 0.395 178.7°
10.0 (GHz) | 0.661 172.8°

I=1, P=0Q=6, N=100, ¢, =232, a=17.233
mm, A =158 mm, d=158 mm, w; =2.25 mm, w, =
7.825 mm.

TABLE 1I
SCATTERING PARAMETER COMPUTED BY AN ALTERNATE DEFINITION
OF INNER PrRODUCT

Assuming Orthogonality Relationship < e,h* >
Frequency | | S | P11

2.0 (GHz) | 0.3944 178.42

10.0 (GHz) | 0.653 177.36

Same parameters as in Table L.

TABLE III
SCATTERING PARAMETER COMPUTED WITHOUT ASSUMING
ORTHOGONALITY RELATIONSHIP

Not Assuming Orthogonality Relationship < e,h >
Frequency | | S | $11

2.0 (GHz) | 0.3946 178.66°
10.0 (GHz) | 0.667 175.30°

Same parameters as in Table L.

ized inner products less than 0.1 for one basis function
(I=J=1) and less than 0.01 for three basis functions
(I =J=3), assuming that the modes are normalized ac-
cording to (7). Satisfactory results were obtained for the
geometries used in this work using inner products with 200
spectral terms (single-sided summation) when one basis
function was used, while for three basis functions 400
terms were necessary, the larger number for the latter case
being expected because of the more rapid current/field
variation. There is a 2 Mbyte memory requirement for
computing the scattering matrix for P = Q = 6 and it takes
about 5 minutes on a VAX 11 /785 once the mode solu-
tions have been found. Finding the higher order modes can
be difficult and requires considerable interactive time.
The significance of the different testing procedures on
(3) is now reviewed with a single mode incident from
region 1 in Fig. 2. The inner products can be taken
according to (7) or (8). A comparison of the two ap-
proaches can be seen by comparing Table I, using (7), with
Table 11, using (8), for P = Q = 6. For propagating modes,
both (7) and (8) give the same resuit. For illustrative
purposes, the remainder of the work presented here uses
the inner product definition in (7). The computed reflec-
tion coefficient evaluated without the modal orthogonality
assumption, (7), is given in Table III. As the mode solu-
tions in this case were quite good, the results using the two
approaches are close. For less accurate mode solutions, the
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TABLE IV
COMPARISON OF BOUNDARY REDUCTION AND ENLARGEMENT TESTING
PROCEDURES WITH P=Q =6

Comparison of Testing Procedures
| S11 | | S21 |
Reduction | 0.1729 0.9849
Enlargement | 0.4667 0.8844

€, =22, a=16 mm, h=127 mm, d=0.127 mm, w; = 0.1905 mm,
w, = 0.381 mm, f=4.0 GHz.

results differ by a greater degree, as would be expected.
For poor mode solutions it appears that the conservation
of power relationship is satisfied more closely when or-
thogonality is assumed. Therefore, the orthogonality rela-
tion is enforced for better convergence.

The boundary enlargement/reduction concept is now
addressed. Table IV gives data comparing the boundary
enlargement and boundary reduction formulations for a
particular single step discontinbity. Six modes from either
side of the discontinuity were used in the construction of
Table IV with a single mode incident from region 1 in Fig.
2. The parameters correspond to the geometry for which
experimental data were obtained. The number of modes
was not large enough to obtain reasonable convergence,
resulting in some difference between the two approaches.
The measured result of |S;;]=0.243 at 4 GHz indicates
that for P=Q =6 the boundary reduction formulation
provides a result below the measured value and the bound-
ary enlargement formulation a solution above the mea-
sured result. There is in general some oscillation of the
scattering parameters as a function of the number of
modes used. The difference between the two formulations
diminishes as the number of modes increases. For the
cases studied, the boundary reduction formulation gave
the fastest convergence. One could consider that, in the
plane of the strip, a step from small to larger strip width
corresponds to a one-dimensional boundary reduction, as
the support of the electric field tangential to the strip has
been reduced. For the remainder of the results presented
here, the boundary reduction formulation is used in (5).

If the modes used are accurate enough, the differences
in the orthogonality criterion and, if there is a sufficient
number, the boundary enlargement-boundary reduction
formulations should be negligible. The purpose of this
comparison was to determine procedures to obtain the
most rapid convergence as a function of both the number
of modes and their accuracy.

In a modal analysis, the convergence as a function of the
total number of modes and as a function of the ratio of the
number of modes used on either side of the junction P/Q,
or relative convergence, needs to be addressed. The crite-
rion used in this convergence study consists of the values
of the scattering parameters. As an example, Fig. 4 gives
calculated data for |S;;] as a function of P+ Q for a
particular geometry given in [10]. For each curve, the
number of modes taken from the right-hand side of the
junction is fixed while the number of modes from the left
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0.3970— ] TABLE V
1 CONVERGENCE IN THE SCATTERING PARAMETERS FOR A SINGLE STEP
0. 39651 DISCONTINUITY AS A FUNCTION OF THE NUMBER OF CURRENT
) ] Basis FUNCTIONS AND MODES
0. 3960; Pt ' Convergence in the Scattering Parameters
k r/' - _ Modes | Basis Functions Sn Sa1
— } \/‘\’ R e 6 1 (~0.1299, 0.3756) (0.81708,0.2892)
&5 0.3955 < ,,/;;. /7"" —— 6 3 (—0.1729,1.346 x 10~%) | (0.9849,—-8.359 x 10~5)
} / \\,,.» A / Cpes 10 1 (—0.2370, —0.6132) .(0.5877,0.4717)
N4 / = . .
0. 3950-] S /. 10 3 (—0.2706,—1.73 x 107*) | (0.9627,—2.08 x 10~*)
¥ Z P=3 tp_ P=5 €, =22, a=1.6 mm, =127 mm, d-=0127 mm, w; = 01905 mm,
1 “p=2 = = 0381 -4 GHz
0.3945 w,=0.381 mm, f= ’
0.3940 N T T T T T
2 4 6 8 10 12

Total Number of Modes (P+Q)

Fig. 4. ' Relative convergence of the magnitude of the reflection coeffi-
cient as a function of the number of modes used (¢, = 2.32, a=17.233
mm, =158 mm, d =1.58 mm, w; = 2.25mm, w, = 7.825 mm, f =2.0
GHz). :

1.0 - [521| —
i R
) A\ F“-ﬁ:ﬁ.\"’ﬁ\_ i A
0.8 I

L |S51| (Kompa)

i . /|s,,|

A |S31| (Experiment: Kompa)

0.0'j T T - T T T “_‘T_‘

Magnitude of Scattering Parameters

o 2 4 6 8 10 12

Frequency (GHz)

Fig. 5. Magnitude of the scattering parameters as a function of fre-
quency (¢, =2.23, a=17233 mm, h =158 mm, d =1.58 mm, w; =225
mm, w, = 7.825 mm). The solid curve represents the computed results
of this work, the dashed represents that of the equivalent waveguide
model used by Kompa.

side is varied as indicated. For this particular case |S;,| was
not very sensitive to the number of modes used. No
significant effect of the ratio P/Q has been observed. A
considerably larger number of modes may be required to
guarantee a convergent solution for a particular geometry,
especially for the phase. These numerical data do not
support the use of a mode ratio different from P =Q. An
equal number of modes on either side of the junction were
therefore used.

Computed magnitudes of S;; and S,, ‘are plotted as a
function of frequency in Fig. 5 for a geometry used by
Kompa [9]. At higher frequencies (around 10 GHz), some
difference between the theoretical and experimental data
in [9] is observed, which is probably due to the accuracy of
the equivalent wavegnide model used and a second propa-

: :
I

1Su1l (€B)
¥

-40 T T T L Bt I T

Frequency (GHz)

(@),
-10
A
] J —
A
N ///
-15
a 7 A
o E 1s
=
—;_—‘ -
—
<23 4
~20
d
-25 T T T T T T T T T T T
0 1 2 3 4 . 5

Frequency (GHz)
(b)

Fig. 6. Measured (solid line) and computed (points) reflection coeffi-

~ cient for (a) a single step-discontinuity (¢, =2.2, a=1.6 mm, h=1.27
mm, d =0.127 mm, w, = 0.1905 mm, w, = 0.381 mm) and (b) a double
step-discontinuity (geometry same as (a) with /, = 5.08 mm).

gating mode with a cutoff frequency of about 9.8 GHz.
The theory presented here is in close agreement with these
experimental results. The equivalent waveguide model ap-
pears to predict the magnitude of the scattering parameters
fairly well under appropriate conditions, but the phase
accuracy is not evident.
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Experiments have been performed on single and double
step discontinuities with different step ratios. For a single
step discontinuity with a line width ratio of w, /w; = 2, the
convergence in the scattering parameters as a function of
the number of modes and the number of current expansion
functions is given in Table V. For this problem ten modes
either side of the junction and three basis functions for the
strip currents give satisfactory results. Notice that a larger
number of modes with a poor representation for the strip
currents do not provide an improvement in the results. For
reasonable convergence in both magnitude and phase,
more than six modes are necessary. Single and double step
discontinuity experimental results for |S;;| are given in Fig.
6, together with computed results using P = Q =10. The
agreement between theory and experiment is quite good.
Possible sources for any discrepancy are the number of
modes used and the effects of finite conductor thickness
and loss, which are not included in the current theory.

IV. CONCLUSION

New aspects of the modal analysis technique, as applied
to the microstrip discontinuity problem, have been investi-
gated. Items discursed were the merits of enforcing modal
orthogonality, the inner product definition, the boundary
enlargement /reduction concept, and convergence. The
purpose of this study was to find satisfactory numerical
solutions with minimum computational requirements. Best
results were obtained by enforcing mode orthogonality,
and the scattering parameters were generally fairly insensi-
tive to which of the two orthogonality conditions were
used, the ratio of the number of modes used on either side
of the junction, and whether a boundary enlargement or
boundary reduction formulation was used, provided a suf-
ficient number of accurate modes were used.
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